ПИЛОТИРУЕМЫЕ ПОЛЕТЫ В КОСМОС

научный журнал

	СОДЕРЖАНИЕ
ГЛАВНЫЙ РЕДАКТОР	
Ю.В. Лончаков	ИТОГИ ПОЛЕТОВ ЭКИПАЖЕЙ МКС4
РЕДАКЦИОННАЯ	Основные результаты подготовки
коллегия:	и деятельности экипажа МКС-49/50
В.А. Сиволап-	при выполнении программы космического
заместитель	полета. А.И. Борисенко
главного редактора,	Медицинское обеспечение полета экипажа
А.В. Кальмин –	МКС-49/50 (экспресс-анализ).
ответственный секретарь,	В.В. Богомолов, В.И. Почуев, И.В. Алферова 15
О.М. Алифанов,	ТЕОРИЯ И ПРАКТИКА
Ю.М. Батурин,	ПИЛОТИРУЕМЫХ ПОЛЕТОВ В КОСМОС 30
М.Н. Бурдаев,	Автоматизация управления деятельностью
Л.К. Васильева,	учреждения. М.М. Харламов, О.Н. Жохова30
Н.В. Волкова,	Совершенствование организационно-
О.С. Гордненко,	методического обеспечения подготовки
П.П. Долгов,	космонавтов. Ю.И. Маленченко,
В.М. Жуков,	В.Н. Дмитриев
С.А. Жуков,	Опыт разработки и применения прототипов
С.В. Игнатьев,	элементов системы информационного
Р.Р. Каспранский,	обеспечения создания, эксплуатации
О.Д. Кононенко,	и целевого использования тренажеров ПКА.
Б.И. Крючков,	А.И. Жохов
А.А. Курицын,	Система вентиляции многомодульного
WHAT PRODUCT A COMPANY SHEROY SHE	обитаемого космического комплекса
Г.Д. Орешкин, В.И. Почуев,	как связующее звено систем регенерационного комплекса
	жизнеобеспечения. С.Ю. Романов,
В.Н. Саев,	А.П. Елчин, А.С. Гузенберг58
В.П. Соколов,	
Ю.Б. Сосюрка,	Новые подходы к организации процесса формирования профессиональных летных
И.Г. Сохин,	качеств космонавтов. В.Г. Сорокин72
В.М. Усов,	•
А.С. Харланов,	Диаграммы рассеяния масштабных макетов космического мусора в условиях
В.И. Ярополов.	солнечно-лазерного подсвета. В.М. Жуков 90

Лингвометодические основы подготовки астронавтов по русскому языку	107
в Центре подготовки космонавтов имени Ю.А. Гагарина. И.В. Супрун	10 /
ИСТОРИЯ. СОБЫТИЯ. ЛЮДИ	114
Исторические аспекты затопления орбитального комплекса «Мир». Ю.И. Маленченко, В.И. Ярополов, А.А. Курицын	114
Информация для авторов и читателей	

CONTENTS

RESULTS OF THE ISS CREW MISSIONS	4
Main Results of the ISS-49/50 Expedition Training and Activity When Carrying out the Mission Plan. A. I. Borisenko	4
Medical Support of the ISS-49/50 Crew Members (Express Analysis). V.V. Bogomolov, V.I. Pochuev, I.V. Alferova	15
THEORY AND PRACTICE OF HUMAN SPACE FLIGHTS	30
Automation of the Management of the Institution Activity. M.M. Kharlamov, O.N. Zhokhova	30
Improvement of Organizational-Methodical Support of Cosmonaut Training. Yu.I. Malenchenko, V.N. Dmitriev	39
Experience in Developing and Applying the Prototypes of Elements of the Informational Support System for Designing, Running, and Intended Use of Manned Spacecraft Simulators. A.I. Zhokhov	46
Ventilation System of a Multimodule Habitable Space Complex as a Connecting Link Between Systems of the Life Support Regeneration Complex. S.Yu. Romanov, A.P. Elchin, A.S. Guzenberg	58
New Approaches to the Organization of the Formation Process of Cosmonauts' Professional Flight Skills. V.G. Sorokin	72
Scattering Diagrams of Scaled Models of Space Debris under Conditions of Solar-Laser Illumination. V.M. Zhukov	90
Linguistic and Methodological Foundation of Astronaut Training in the Russian Language at the Gagarin Cosmonaut Training Center. I.V. Suprum	107
HISTORY. EVENTS. PEOPLE	114
Historical Aspects of Sinking the Orbital Complex "Mir". Yu.I. Malenchenko, V.I. Yaropolov, A.A. Kuritsyn	114
Information for Authors and Readers	129

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ПОДГОТОВКИ И ДЕЯТЕЛЬНОСТИ ЭКИПАЖА МКС-49/50 ПРИ ВЫПОЛНЕНИИ ПРОГРАММЫ КОСМИЧЕСКОГО ПОЛЕТА

А.И. Борисенко

Аннотация. Рассматриваются результаты деятельности экипажа МКС-49/50 на борту транспортного пилотируемого корабля (ТПК) «Союз МС-02» и Международной космической станции (МКС). Дается сравнительный анализ и оценивается вклад экипажа в общую программу космических полетов на МКС. Особое внимание уделяется проведению научно-прикладных исследований и экспериментов на борту станции. Даются замечания и предложения по совершенствованию российского сегмента (РС) Международной космической станции.

Ключевые слова: задачи подготовки экипажа, космический полет, Международная космическая станция, научно-прикладные исследования и эксперименты.

ЛИТЕРАТУРА

Борисенко Андрей Иванович — Герой Российской Федерации, летчик-космонавт Российской Федерации, ФГБУ «НИИ ЦПК имени Ю.А. Гагарина».

Электронная почта: info@gctc.ru

Main Results of the ISS-49/50 Expedition Training and Activity When Carrying out the Mission Plan. A.I. Borisenko

Abstract. The paper considers the results of activity of the ISS-49/50 expedition aboard the «Soyuz MC-02» transport spacecraft and ISS. Also, it presents the comparative analysis and estimation of the crew's contribution to the general ISS flight program. Particular attention is paid to the implementation of scientific applied research and experiments aboard the station. Comments and suggestions to improve the ISS Russian Segment are given.

Keywords: tasks of crew training, spaceflight, International Space Station, scientific applied research and experiments.

REFERENCES

Borisenko Andrey Ivanovich – Hero of the Russian Federation, pilot-cosmonaut of the Russian Federation, FSBO "Gagarin R&T CTC"

E-mail: info@gctc.ru

УДК 61:629.78.007

МЕДИЦИНСКОЕ ОБЕСПЕЧЕНИЕ ПОЛЕТА ЭКИПАЖА МКС-49/50 (ЭКСПРЕСС-АНАЛИЗ)

В.В. Богомолов, В.И. Почуев, И.В. Алферова

Аннотация. В статье представлены результаты медицинского обеспечения полета экипажа МКС-49/50. Дается краткая характеристика функционирования систем медицинского обеспечения полета и поддержания стабильности среды обитания космонавтов на РС МКС. Подведены итоги выполнения экипажем рекомендаций медицинских специалистов, программы медицинского контроля и использования бортовых средств профилактики нарушения состояния здоровья космонавтов в полете.

Ключевые слова: медицинское обеспечение, медицинский контроль, система профилактики, среда обитания, режим труда и отдыха.

ЛИТЕРАТУРА

Богомолов Валерий Васильевич - докт. мед. наук, профессор, Государственный научный центр РФ – Институт медико-биологических проблем Российской академии наук.

Электронная почта:

Почуев Владимир Иванович - канд. мед. наук, старший научный сотрудник, начальник управления – врач-терапевт высшей категории, ФГБУ «НИИ ЦПК имени Ю.А. Гагарина».

Электронная почта: V.Pochuev@gctc.ru

Алферова Ирина Владимировна – канд. мед. наук, руководитель группы медицинского обеспечения полетов, Государственный научный центр $P\Phi$ – Институт медико-биологических проблем Российской академии наук.

Электронная почта:

Express Analysis of Medical Provision of the ISS-49/50 Crew Members.

V.V. Bogomolov, I. Pochuev, I.V. Alferova

Abstract. The paper shows the results of medical provision of the ISS-49/50 expedition and gives a brief description of functioning of the medical support system and maintaining the stability of human environment aboard the ISS RS. Besides, the paper sums up the results of the implementation of medical recommendations, program of medical monitoring and use of onboard means meant for preventing the alteration of cosmonauts' health status in spaceflight.

Keywords: medical support, medical monitoring, preventive system, human environment, work-rest schedule.

REFERENCES

Bogomolov Valery Vasilievich – Doctor of Medical Sciences, Professor, State Science Center of the Russian Federation – Institute of Biomedical Problems of the RAS.

E-mail:

Pochuev Vladimir Ivanovich - PhD in Medical Sciences, senior researcher, Department Head-physician of the highest category, FSBO "Gagarin R&T CTC".

E-mail: V.Pochuev@gctc.ru

Alferova Irina Vladimirovna – PhD in Medicine, leader of the mission medical support group, State Science Center of the Russian Federation – Institute of Biomedical Problems of RAS.

E-mail:

УДК 005.591.6

АВТОМАТИЗАЦИЯ УПРАВЛЕНИЯ ДЕЯТЕЛЬНОСТЬЮ УЧРЕЖДЕНИЯ

М.М. Харламов, О.Н. Жохова

Аннотация. В статье рассматриваются вопросы формирования облика системы автоматизации управления деятельностью ФГБУ «НИИ ЦПК имени Ю.А. Гагарина».

Ключевые слова: система автоматизации управления, эффективное управление деятельностью, процессный подход, качественная информация, система целеполагания, контролируемые показатели, система поддержки принятия решений.

ЛИТЕРАТУРА

- [1] Стратегия развития информационного общества в Российской Федерации на 2017-2030 годы. Утверждена Указом Президента Российской Федерации № 203 от 9 мая 2017 г.
- [2] Федеральное агентство по техническому регулированию и метрологии Национальный стандарт Российской Федерации ГОСТ Р ИСО 9001-2015. Системы менеджмента качества Требования. М., 2015.
- [3] Методология моделирования системы поддержки принятия решений / Серенков П.С., Краснопрошин В.В., Максимович Е.П. // Материалы журнала Методы менеджмента качества. 2008. № 11. С. 26–31.
- [4] Министерство финансов Российской Федерации. Основные направления бюджетной политики на 2017

год и на плановый период 2018 и 2019 годов. – М., 2016.

- [5] Лончаков Ю.В. Центр подготовки космонавтов на пути инновационного развития (к 55-летию НИИ ЦПК имени Ю.А. Гагарина) // Пилотируемые полеты в космос. № 1(14). 2015.
- [6] Использование информационных технологий в процессе подготовки космонавтов / Харламов М.М., Курицын А.А., Ковригин С.Н. // Пилотируемые полеты в космос. 2013. № 1(6).

Харламов Максим Михайлович — заместитель начальника Центра (по планированию и развитию), ФГБУ «НИИ ЦПК имени Ю.А. Гагарина».

Электронная почта: M.Kharlamov@gctc.ru

Жохова Ольга Николаевна – инженер-программист, ФГБУ «НИИ ЦПК имени Ю.А. Гагарина».

Электронная почта: O.Zhokhova@gctc.ru

Automation of the Management of the Institution's Activities.

M.M. Kharlamov, O.N. Zhokhova

Abstract. The paper discusses the issues of the formation of the automation system concept for managing the activities of FSBO "Gagarin R&T CTC".

Keywords: management automation system, effective management of activity, process approach to management, quality information, goal-setting system, supervised parameters, decision-making support system.

REFERENCES

- [1] Стратегия развития информационного общества в Российской Федерации на 2017-2030 годы. Утверждена Указом Президента Российской Федерации № 203 от 9 мая 2017 г.
- [2] Федеральное агентство по техническому регулированию и метрологии Национальный стандарт Российской Федерации ГОСТ Р ИСО 9001-2015. Системы менеджмента качества Требования. М., 2015.
- [3] Методология моделирования системы поддержки принятия решений / Серенков П.С., Краснопрошин В.В., Максимович Е.П. // Материалы журнала Методы менеджмента качества. 2008. № 11. С. 26–31.
- [4] Министерство финансов Российской Федерации. Основные направления бюджетной политики на 2017 год и на плановый период 2018 и 2019 годов. М., 2016.
- [5] Лончаков Ю.В. Центр подготовки космонавтов на пути инновационного развития (к 55-летию НИИ ЦПК имени Ю.А. Гагарина) // Пилотируемые полеты в космос. № 1(14). 2015.
- [6] Использование информационных технологий в процессе подготовки космонавтов / Харламов М.М., Курицын А.А., Ковригин С.Н. // Пилотируемые полеты в космос. 2013. № 1(6).

Kharlamov Maksim Mikhaylovich – Deputy Head for planning and development, FSBO "Gagarin R&T CTC"

E-mail: M.Kharlamov@gctc.ru

Zhokhova Olga Nikolaevna – software engineer, FSBO "Gagarin R&T CTC"

E-mail: O.Zhokhova@gctc.ru

УДК 629.78.072.8

СОВЕРШЕНСТВОВАНИЕ ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ПОДГОТОВКИ КОСМОНАВТОВ

Ю.И. Маленченко, В.Н. Дмитриев

Аннотация. В статье рассматриваются вопросы разработки новых документов Центра 2-го уровня «Организационно-методических основ подготовки космонавтов» для каждого из этапов подготовки. Показаны цели, задачи и содержание указанных документов для подготовки космонавтов на каждом из этапов подготовки.

Ключевые слова: космонавт, подготовка, организационно-методическая документация, учебная дисциплина, этап подготовки, требования к подготовке, программа подготовки, тематические планы подготовки, организационно-методические основы подготовки космонавтов.

ЛИТЕРАТУРА

- [1] Перечень основных документов, регламентирующих деятельность ФГБУ «НИИ ЦПК имени Ю.А. Гагарина», 2016 г.
- [2] Руководство по подготовке космонавтов ЦПК имени Ю.А. Гагарина (РПК-87), 1987 г.
- [3] Руководство по подготовке космонавтов в Российской Федерации (РПК-2008). РГНИИЦПК им. Ю.А. Гагарина, 2008.
- [4] Временное Руководство по подготовке космонавтов в Российской Федерации, ФГБУ «НИИ ЦПК имени Ю.А. Гагарина», проект, 2014 г.
- [5] Организационно-методические основы общекосмической подготовки кандидатов в космонавты. ФГБУ «НИИ ЦПК имени Ю.А. Гагарина», 2012.
- [6] Организационно-методические основы подготовки космонавтов в составе групп специализации и совершенствования. ФГБУ «НИИ ЦПК имени Ю.А. Гагарина», 2015.
- [7] Организационно-методические основы подготовки экипажей МКС. ФГБУ «НИИ ЦПК имени Ю.А. Гагарина», 2010.
- [8] Этапы инновационного развития Центра подготовки космонавтов имени Ю.А. Гагарина / Лончаков Ю.В., Крючков Б.И., Курицын А.А. // Полет. 2015. № 4. С. 4–14.
- [9] Эволюция системы подготовки космонавтов в СССР Российской Федерации: от тренировки навыков к формированию профессиональной компетентности / Крючков Б.И., Сохин И.Г., Курицын А.А. // Вопросы истории естествознания и техники. 2012. № 3. С. 105–109.

Маленченко Юрий Иванович — Герой Российской Федерации, летчик-космонавт Российской Федерации, первый заместитель начальника Центра «ФГБУ «НИИ ЦПК имени Ю.А. Гагарина».

Электронная почта: info@gctc.ru

Дмитриев Владимир Николаевич – канд. воен. наук, старший научный сотрудник, заместитель начальника отдела «ФГБУ «НИИ ЦПК имени Ю.А. Гагарина».

Электронная почта: V.Dmitriev@gctc.ru

Perfection of Organizational-Methodical Provision of Cosmonaut Training.

Yu.I. Malenchenko, V.N. Dmitriev

Abstract. The paper discusses the issues of the development of the Center's 2nd level documents "Organizational-Methodical Basics of Cosmonaut Training" for each training stage. Objectives, tasks, and content of the said documents are shown.

Keywords: cosmonaut, training, organizational-methodical documentation, discipline, training stage, requirements for training, training program, topical plan of training, organizational-methodical basics.

- [1] Перечень основных документов, регламентирующих деятельность ФГБУ «НИИ ЦПК имени Ю.А. Гагарина», 2016 г.
- [2] Руководство по подготовке космонавтов ЦПК имени Ю.А. Гагарина (РПК-87), 1987 г.
- [3] Руководство по подготовке космонавтов в Российской Федерации (РПК-2008). РГНИИЦПК им. Ю.А. Гагарина, 2008.
- [4] Временное Руководство по подготовке космонавтов в Российской Федерации, ФГБУ «НИИ ЦПК имени Ю.А. Гагарина», проект, 2014 г.
- [5] Организационно-методические основы общекосмической подготовки кандидатов в космонавты. ФГБУ «НИИ ЦПК имени Ю.А. Гагарина», 2012.
- [6] Организационно-методические основы подготовки космонавтов в составе групп специализации и совершенствования. ФГБУ «НИИ ЦПК имени Ю.А. Гагарина», 2015.
- [7] Организационно-методические основы подготовки экипажей МКС. ФГБУ «НИИ ЦПК имени Ю.А. Гагарина», 2010.
- [9] Эволюция системы подготовки космонавтов в СССР Российской Федерации: от тренировки навыков к формированию профессиональной компетентности / Крючков Б.И., Сохин И.Г., Курицын А.А. // Вопросы истории естествознания и техники. – 2012. – № 3. – С. 105–109.

Malenchenko Yuri Ivanovich – Hero of the Russian Federation, pilot-cosmonaut of the RF, First Deputy Head of FSBO "Gagarin R&T CTC"

E-mail: info@gctc.ru

Dmitriev Vladimir Nikolaevich – Candidate of military Sciences, senior researcher, deputy head of division E-mail: V.Dmitriev@gctc.ru

УДК 629.78.007

ОПЫТ РАЗРАБОТКИ И ПРИМЕНЕНИЯ ПРОТОТИПОВ ЭЛЕМЕНТОВ СИСТЕМЫ ИНФОРМАЦИОННОГО ОБЕСПЕЧЕНИЯ СОЗДАНИЯ, ЭКСПЛУАТАЦИИ И ЦЕЛЕВОГО ИСПОЛЬЗОВАНИЯ ТРЕНАЖЕРОВ ПКА

А.И. Жохов

Аннотация. Приведены задачи автоматизации информационного обеспечения создания, эксплуатации и целевого использования тренажеров ПКА, результаты создания и применения прототипов соответствующих информационных систем.

Ключевые слова: тренажер пилотируемого космического аппарата, информационное обеспечение, информационная система, информационная технология.

ЛИТЕРАТУРА

- [1] Жохов А.И. Разработка и исследование базы данных по подготовке космонавтов на технических средствах тренажерного управления РГНИИЦПК // V Международная научно-практическая конференция «Пилотируемые полеты в космос»: Сб. тезисов. Звездный городок, 2003.
- [2] Концепция информатизации ФГБУ «НИИ ЦПК имени Ю.А. Гагарина» (на период 2013–2015 гг. и дальнейшую перспективу). Звездный городок, 2013.
- [3] Стратегия развития информационных технологий ФГБУ «НИИ ЦПК имени Ю.А. Гагарина» на 2016–2020 годы. Звездный городок, 2016.
- [4] Жохов А.И., Игнатьев С.В. К вопросу о создании информационной системы сопровождения работ и тренировок, выполняемых на тренажерах ПКА // Х Международная научно-практическая конференция «Пилотируемые полеты в космос»: Сб. тезисов. Звездный городок, 2013.
- [5] Жохов А.И. Опыт создания и использования информационной системы сопровождения работ и тренировок, выполняемых на тренажерах ПКА // XI Международная научно-практическая конференция «Пилотируемые полеты в космос»: Сб. тезисов. Звездный городок, 2015.
- [6] Жохов А.И., Греков Н.С. Использование информационных технологий для сбора и анализа результатов тренировок по ручной стыковке ПКА на тренажерах «Телеоператор» и «Дон-Союз ТМА» // XI Международная научно-практическая конференция «Пилотируемые полеты в космос»: Сб. тезисов. Звездный городок, 2015.
- [7] Ext JS 4 Web Application Development Cookbook / Andrew Duncan, Stuart Ashworth. Packt Publishing, 2012.
- [8] Ext JS 6 By Example. Create powerful, real-world web applications with Ext JS 6 using sample projects / Anand Dayalan. Packt Publishing, 2015.

Жохов Александр Иванович – канд. техн. наук, ведущий научный сотрудник, ФГБУ «НИИ ЦПК имени Ю.А. Гагарина».

Электронная почта: A.Zhokhov@gctc.ru

Experience in Developing and Applying the Prototypes of Elements of the Informational Support System for Designing, Running, and Purpose-Oriented Use of Manned Spacecraft Simulators. A.I. Zhokhov

Abstract. The paper gives the automation tasks of the informational support for designing, running, and intended use of manned spacecraft simulators as well as the results of the creation and application of the prototypes of appropriate information systems.

Keywords: manned spacecraft simulator, informational support, information system, information technology.

- [1] Жохов А.И. Разработка и исследование базы данных по подготовке космонавтов на технических средствах тренажерного управления РГНИИЦПК // V Международная научно-практическая конференция «Пилотируемые полеты в космос»: Сб. тезисов. Звездный городок, 2003.
- [2] Концепция информатизации ФГБУ «НИИ ЦПК имени Ю.А. Гагарина» (на период 2013–2015 гг. и дальнейшую перспективу). Звездный городок, 2013.
- [3] Стратегия развития информационных технологий ФГБУ «НИИ ЦПК имени Ю.А. Гагарина» на 2016–2020 годы. Звездный городок, 2016.
- [4] Жохов А.И., Игнатьев С.В. К вопросу о создании информационной системы сопровождения работ и тренировок, выполняемых на тренажерах ПКА // Х Международная научно-практическая конференция «Пилотируемые полеты в космос»: Сб. тезисов. Звездный городок, 2013.
- [5] Жохов А.И. Опыт создания и использования информационной системы сопровождения работ и тренировок, выполняемых на тренажерах ПКА // XI Международная научно-практическая конференция «Пилотируемые полеты в космос»: Сб. тезисов. Звездный городок, 2015.
- [6] Жохов А.И., Греков Н.С. Использование информационных технологий для сбора и анализа результатов тренировок по ручной стыковке ПКА на тренажерах «Телеоператор» и «Дон-Союз ТМА» // XI Международная научно-практическая конференция «Пилотируемые полеты в космос»: Сб. тезисов. Звездный городок, 2015.
- [7] Ext JS 4 Web Application Development Cookbook / Andrew Duncan, Stuart Ashworth. Packt Publishing, 2012.
- [8] Ext JS 6 By Example. Create powerful, real-world web applications with Ext JS 6 using sample projects / Anand Dayalan. Packt Publishing, 2015.

Zhokhov Aleksandr Ivanovich – Candidate of Technical Sciences, leading researcher, FSBO "Gagarin R&T CTC"

E-mail: A.Zhokhov@gctc.ru

УДК 629.78.048

СИСТЕМА ВЕНТИЛЯЦИИ МНОГОМОДУЛЬНОГО ОБИТАЕМОГО КОСМИЧЕСКОГО КОМПЛЕКСА КАК СВЯЗУЮЩЕЕ ЗВЕНО СИСТЕМ РЕГЕНЕРАЦИОННОГО КОМПЛЕКСА ЖИЗНЕОБЕСПЕЧЕНИЯ

С.Ю. Романов, А.П. Елчин, А.С. Гузенберг

Аннотация. В статье рассмотрены принципы построения систем вентиляции многомодульных обитаемых космических комплексов (МОКК) и предложена методика выбора параметров системы вентиляции и оценки их влияния на динамику изменения концентраций составляющих газовой среды в герметичных отсеках МОКК. Показано, что характеристики межмодульной вентиляции в первую очередь определяются необходимостью поддержания требуемых концентраций диоксида углерода (CO_2) и водяного пара и необходимостью обеспечения их приемлемых перепадов концентраций между местами выделения (выброса) и местами размещения средств их удаления из газовой среды.

Ключевые слова: космический комплекс, вентиляция, экипаж, диоксид углерода, водяной пар, микропримеси, концентрация, регенерация.

ЛИТЕРАТУРА

- [1] Вредные примеси в атмосфере обитаемых космических станций / Романов С.Ю., Мухамедиева Л.Н., Гузенберг А.С., Микос К.Н. // Известия РАН. Энергетика. 2006. № 1. С. 31–49.
- [2] Выгодский М.Я. Справочник по высшей математике. М.: Наука, 1973. 872 с.
- [3] Космические системы обеспечения: особенности обеспечения токсической безопасности искусственной среды на многомодульных космических станциях / Романов С.Ю., Телегин А.А., Гузенберг А.С., Юргин А.В., Павлова А.Г. // Инженерная экология. 2013. № 2(110). С. 50–62.
- [4] Романов С.Ю., Бобе Л.С. Построение и энергомассовые характеристики группы регенерационных систем водообеспечения космической станции // Пилотируемые полеты в космос. 2016. № 2(19). С. 25–34.

Романов Сергей Юрьевич – канд. техн. наук, заместитель генерального конструктора, главный конструктор пилотируемых космических комплексов, ПАО «РКК «Энергия» им. С.П. Королева».

Электронная почта: POST@rsce.ru

Елчин Анатолий Петрович – заместитель начальника отделения, ПАО «РКК «Энергия»

им. С.П. Королева».

Электронная почта: POST@rsce.ru

Гузенберг Аркадий Самуилович – канд. техн. наук, старший научный сотрудник, ПАО «РКК «Энергия» им. С.П. Королева».

Электронная почта: POST@rsce.ru

Ventilation System of a Multimodule Habitable Space Complex as a Connecting Link between Systems of the Life Support Regeneration Complex.

S.Yu. Romanov, A.P. Elchin, A.S. Guzenberg

Abstract. The paper discusses the architecture of ventilation systems for Multimodule Habitable Space Complexes (MHSCs) and proposes the method for identifying parameters of the ventilation system and evaluating their effects on the time profiles of concentrations of atmospheric components in pressurized compartments of MHSC. It demonstrates that inter-module ventilation parameters are primarily driven by the need to maintain the required concentration levels of carbon dioxide (CO₂) and water vapor and by the need to provide acceptable gradients of their concentrations between locations where they are released and locations where the equipment for their removal is installed.

Keywords: space complex, ventilation, crew, carbon dioxide, water vapor, trace contaminants, concentration, regeneration.

REFERENCES

- [1] Вредные примеси в атмосфере обитаемых космических станций / Романов С.Ю., Мухамедиева Л.Н., Гузенберг А.С., Микос К.Н. // Известия РАН. Энергетика. 2006. № 1. С. 31–49.
- [2] Выгодский М.Я. Справочник по высшей математике. М.: Наука, 1973. 872 с.
- [3] Космические системы обеспечения: особенности обеспечения токсической безопасности искусственной среды на многомодульных космических станциях / Романов С.Ю., Телегин А.А., Гузенберг А.С., Юргин А.В., Павлова А.Г. // Инженерная экология. 2013. № 2(110). С. 50–62.
- [4] Романов С.Ю., Бобе Л.С. Построение и энергомассовые характеристики группы регенерационных систем водообеспечения космической станции // Пилотируемые полеты в космос. 2016. № 2(19). С. 25–34.

Romanov Sergey Yurievich – Candidate of Technical Sciences, Deputy General Designer, Chief Designer of manned space complexes, S.P. Korolev Rocket and Space Corporation "Energia"

E-mail: POST@rsce.ru

Elchin Anatoliy Petrovich – deputy subdivision head, S.P. Korolev Rocket and Space Corporation "Energia"

E-mail: POST@rsce.ru

Guzenberg Arkadiy Samuilovich – Candidate of Technical Sciences, S.P. Korolev Rocket and Space Corporation "Energia"

E-mail: POST@rsce.ru

УДК 629.78.007:629.73

НОВЫЕ ПОДХОДЫ К ОРГАНИЗАЦИИ ПРОЦЕССА ФОРМИРОВАНИЯ ПРОФЕССИОНАЛЬНЫХ ЛЕТНЫХ КАЧЕСТВ КОСМОНАВТОВ

В.Г. Сорокин

Аннотация. В настоящее время ни одно из существующих в земных условиях тренажерных средств не может обеспечить моделирование условий, наиболее приближенных к космическому полету. Вместе с тем, космонавт должен быть полностью подготовлен к космическому полету на Земле. Вследствие этого необходимые для выполнения космического полета профессионально важные качества космонавтов вырабатываются разными видами подготовки фрагментарно, в том числе и за счет профессиональных летных качеств, сформированных в процессе специальной летной подготовки. Новые подходы к организации процесса

формирования профессиональных летных качеств космонавтов предложены в данной статье.

Ключевые слова: блок, комплекс полетов, космонавты, коэффициент, метод, полет, профессиональные летные качества, процесс, раздел, специальная летная подготовка, упражнение, формирование.

ЛИТЕРАТУРА

- [1] Колесников Г.М. Прикладные аспекты теории деятельности человека. Монография. Монино, 2010.
- [2] Крикалёв С.К., Сорокин В.Г. и др. Новые подходы к организации специальной летной подготовки космонавтов // Пилотируемые полеты в космос. 2013. № 4(9). С. 82–91.
- [3] Курс летной и парашютной подготовки космонавтов. Центр подготовки космонавтов имени Ю.А. Гагарина, 1990.
- [4] Курс летной подготовки постоянного состава ВУЗ ВВС на учебном самолете (КЛП ПС-94). М.: Воениздат, 1994.
- [5] Объединенная специализированная программа подготовки летного состава ВВС США JSUPT (Joint SUPT). Интернет-ресурсы.
- [6] Подготовка летчиков в зарубежных учебных авиационных центрах по объединенной программе подготовки летчиков в США ENJJPT (Euro-NATO Joint Jet Pilot Training). Интернет-ресурсы.
- [7] Подготовка летчиков в зарубежных учебных авиационных центрах по объединенной программе подготовки летчиков в Канаде по программе NFTC (NATO Flight Training in Canada). Интернет-ресурсы.
- [8] Подготовка кандидатов в США по программе первоначальной летной подготовки IFS (Initial Flight Screening). Интернет-ресурсы.
- [9] Программа подготовки летного состава ВВС США UPT (Undergraduate Pilot Training). Интернет-ресурсы.
- [10] Программа подготовки летчиков-истребителей ВВС США по программе подготовки истребителей LIFT УТС AТ-38B. Интернет-ресурсы.
- [11] Программа подготовки летного состава ВВС США по однопоточной программе UPT. Интернет-ресурсы.
- [12] Программа подготовки пилотов-любителей авиации общего назначения на самолете Як-52. ФАС. Калужское АЛТУ. – Калуга, 1997.
- [13] Руководство по организации и проведению подготовки космонавтов с использованием авиационной техники. ФГБУ «НИИ ШПК имени Ю.А. Гагарина». 2012.
- [14] Содержание курса учебно-летной подготовки спортивных авиационных организаций РОСТО на самолетах (КУЛП-САО-С-01). Интернет-ресурсы.
- [15] Определение уровней формирования профессиональных летных качеств космонавтов в процессе специальной летной подготовки / Сорокин В.Г., Бурдаев М.Н., Халиков М.Р. // Пилотируемые полеты в космос. − 2017. − № 2(23). − С. 82–93.
- [16] Специализированная программа подготовки летного состава ВВС США SUPT (Specialized UPT). Интернет-ресурсы.
- [17] Федеральные авиационные правила полетов в воздушном пространстве Российской Федерации (ФАПП-2003) (Приказ Министра обороны Российской Федерации, Министерства транспорта Российской Федерации и Российского авиационно-космического агентства от 31.03.02 № 136/42/51. Зарегистрирован в Минюсте 24.07.2002 г. № 3615).
- [18] Федеральные авиационные правила производства полетов государственной авиации (ФАППП-2004). Утверждены приказом МО РФ № 275 от 24.09.2004 г.

Сорокин Владимир Геннадьевич — канд. военных наук, доцент, старший научный сотрудник ФГБУ «НИИ ЦПК имени Ю.А. Гагарина».

Электронная почта: V.Sorokin@gctc.ru

New Approaches to the Organization of the Formation Process of Cosmonauts' Professional Flight Skills. V.G. Sorokin

Abstract. At present, no one of the existing simulators can simulate the conditions maximum closest to spaceflight conditions. Therewith, the cosmonauts should be completely trained for a space flight on Earth. As a result, the required major professional skills are being formed by means of various training types fragmentarily, including owing to professional flight skills acquired during special flight training. The paper gives new approaches to the organization of the formation process of cosmonauts' professional flight skills.

Keywords: block, complex of flights, cosmonauts, coefficient, method, flight, professional flight skills, process, partition, special flight training, exercise, formation.

- [1] Колесников Г.М. Прикладные аспекты теории деятельности человека. Монография, Монино, 2010.
- [2] Крикалёв С.К., Сорокин В.Г. и др. Новые подходы к организации специальной летной подготовки космонавтов // Пилотируемые полеты в космос. 2013. № 4(9). С. 82–91.
- [3] Курс летной и парашютной подготовки космонавтов. Центр подготовки космонавтов имени Ю.А. Гагарина, 1990.
- [4] Курс летной подготовки постоянного состава ВУЗ ВВС на учебном самолете (КЛП ПС-94). М.: Воениздат, 1994.
- [5] Объединенная специализированная программа подготовки летного состава ВВС США JSUPT (Joint SUPT). Интернет-ресурсы.
- [6] Подготовка летчиков в зарубежных учебных авиационных центрах по объединенной программе подготовки летчиков в США ENJJPT (Euro-NATO Joint Jet Pilot Training). Интернет-ресурсы.
- [7] Подготовка летчиков в зарубежных учебных авиационных центрах по объединенной программе подготовки летчиков в Канаде по программе NFTC (NATO Flight Training in Canada). Интернет-ресурсы.
- [8] Подготовка кандидатов в США по программе первоначальной летной подготовки IFS (Initial Flight Screening). Интернет-ресурсы.
- [9] Программа подготовки летного состава ВВС США UPT (Undergraduate Pilot Training). Интернет-ресурсы.
- [10] Программа подготовки летчиков-истребителей ВВС США по программе подготовки истребителей LIFT УТС AТ-38B, Интернет-ресурсы.
- [11] Программа подготовки летного состава ВВС США по однопоточной программе UPT. Интернет-ресурсы.
- [12] Программа подготовки пилотов-любителей авиации общего назначения на самолете Як-52. ФАС. Калужское АЛТУ. Калуга, 1997.
- [13] Руководство по организации и проведению подготовки космонавтов с использованием авиационной техники. ФГБУ «НИИ ЦПК имени Ю.А. Гагарина», 2012.
- [14] Содержание курса учебно-летной подготовки спортивных авиационных организаций РОСТО на самолетах (КУЛП-САО-С-01). Интернет-ресурсы.
- [15] Определение уровней формирования профессиональных летных качеств космонавтов в процессе специальной летной подготовки / Сорокин В.Г., Бурдаев М.Н., Халиков М.Р. // Пилотируемые полеты в космос. − 2017. − № 2(23). − С. 82−93.
- [16] Специализированная программа подготовки летного состава ВВС США SUPT (Specialized UPT). Интернет-ресурсы.
- [17] Федеральные авиационные правила полетов в воздушном пространстве Российской Федерации (ФАПП-2003) (Приказ Министра обороны Российской Федерации, Министерства транспорта Российской Федерации и Российского авиационно-космического агентства от 31.03.02 № 136/42/51. Зарегистрирован в Минюсте 24.07.2002 г. № 3615).
- [18] Федеральные авиационные правила производства полетов государственной авиации (ФАППП-2004). Утверждены приказом МО РФ № 275 от 24.09.2004 г.

Sorokin Vladimir Gennadievich – Candidate in Military Science, associate professor, senior researcher, FSBO "Gagarin R&T CTC".

E-mail: V.Sorokin@gctc.ru

УДК 629.78.072.8

ДИАГРАММЫ РАССЕЯНИЯ МАСШТАБНЫХ МАКЕТОВ КОСМИЧЕСКОГО МУСОРА В УСЛОВИЯХ СОЛНЕЧНО-ЛАЗЕРНОГО ПОДСВЕТА

В.М. Жуков

Аннотация. В статье рассмотрены структура космического мусора и режимы работы систем контроля космического пространства (ККП) с применением лазеров. Дано описание лабораторной экспериментальной установки и методики регистрации диаграмм рассеяния (ДР) макетов космического мусора (КМ). Цель исследований состояла в изучении особенностей отражательных характеристик объектов КМ в условиях солнечно-лазерного подсвета. Разработанная компьютерная программа обеспечивает управление вращением макетов, вычисление и вывод на печать статистических характеристик и графиков ДР. Показано влияние лазерного подсвета на искажение цветовых характеристик объектов и на космонавта. Интерпретация результатов выполнена применительно последовательным фазам операции наблюдения КМ (обнаружение, сопровождение, измерение дальности, фокусировка луча, воздействие лазера, контроль результатов) на освещенном и теневом участках орбиты объектов КМ.

Ключевые слова: диаграмма рассеяния, масштабный макет, космический мусор, солнечно-лазерный подсвет, космонавт, плазма, тормозной импульс.

- [1] Космический мусор // URL: https://ru.wikipedia.org/wiki/ (дата обращения: 16.03.2017).
- [2] ЦНИИмаш: объекты космического мусора // URL: http://planet-today.ru/novosti/nauka/item/ 18774-tsniimash-okolo-750-mln-obektov-kosmicheskogo-musora (дата обращения: 08.04.2017).
- [3] Карасев П.А. Ядерные энергетические установки в космосе // Атомная стратегия». № 30. 2007. URL: http://www.proatom.ru/modules.php?name=News&file=article&sid=995 (дата обращения: 04.04.2017).
- [4] Замечания и предложения по решению Комитета по экологии ГД: «О проблемах техногенного загрязнения ОКП». М.: Межведомственная комиссия по экологической безопасности Совета безопасности РФ, № А 21-263 от 27.4.1995.
- [5] Уфимцев П.Я. Метод краевых волн в физической теории дифракции. М.: Советское радио, 1962. 244 с.
- [6] Лабунец Л.В. Цифровые модели изображений целей и реализаций сигналов в оптических локационных системах // Учеб. пособие. М.: МГТУ им. Н.Э. Баумана, 2007. 216 с.
- [7] Непогодин И.А. Отражательные характеристики объектов и фонов и их информативность в лазерной локации // Диссертация докт. физ.-мат. наук. Казань, 1998. 373 с.
- [8] Мишура Т.П., Платонов О.Ю. Проектирование лазерных систем: учеб. пособие. ГУАП, СПб, 2006. 98 с, илл. // URL: http://window.edu.ru/catalog/pdf2txt/059/45059/21837, (дата обращения: 21.03.2017).
- [9] Кузнецов Л.И. Импульс отдачи на твердую поверхность в режиме развитого лазерного испарения // Квантовая электроника. 1993. Т. 20. № 12. С. 1191–1195.
- [10] Кузнецов Л.И., Ярыгин В.Н. Лазерно-реактивный метод очистки космического пространства от малоразмерного мусора // Квант. электрон. 21/6 (1994). С. 600–602.
- [11] Оптико-визуальные приборы транспортного корабля «Союз МС» / Учеб. пособие. ФГБУ «НИИ ЦПК имени Ю.А. Гагарина», 2015. 29 с., илл.
- [12] Выбор лазеров для увеличения дальности бортовых локационных систем космических аппаратов / Старовойтов Е. И., Савчук Д. В., Зубов Н. Е. // Научное издание МГТУ им. Н.Э. Баумана, выпуск N08, 2013. URL: http://cyberleninka.ru/article/n/vybor-lazerov-dlya-uvelicheniya-dalnosti-bortovyh-lokatsionnyh-sistem-kosmicheskihapparatov (дата обращения: 16.03.2017).
- [13] Панели лазерных отражателей // ОАО НПК «Системы прецизионного приборостроения». URL: http://www.npk-spp.ru/deyatelnost/otrazhateli.html.
- [14] Техническое задание на космический эксперимент «Исследование передачи электрической энергии лазерным излучением между КА» // РКК «Энергия», 2011.
- [15] Лазер на МКС для борьбы с космическим мусором // URL:http://www.dailytechinfo.org/ space/6946-lazer-kosmicheskiy-musor.html (дата обращения: 16.09.2017).
- [16] Радиооптический комплекс распознавания космических объектов «Крона» / URL: http://www.rtisystems.ru/products/radarcomplexes/special-radar-complexes/10/ (дата обращения: 16.09.2017).
- [17] Оптико-электронный комплекс «Окно» / URL: http://epizodsspace.no-ip.org/bibl/internet/ okno.html (дата обращения: 16.09.2017).
- [18] Станция оптических наблюдений «Архыз» / URL: http://npk-spp.ru/deyatelnost/ adaptivnaya-optika.html (дата обращения: 17.09.2017).
- [19] Миникулов Н.Х., Гулямов М.И., Абдуллоев С.Х. // Известия АН Республики Таджикистан. № 2 (139). 2010 (дата обращения: 17.09.2017).
- [20] Получение изображений космических аппаратов телескопом алтайского оптико-лазерного центра с использованием адаптивной оптики / Галкин А.А., Гришин Е.А., Иншин П.П., Шаргородский В.Д. // Космические исследования. Т. 46. № 3. 2008. URL:http://elibrary.ru/ item.asp?id=9976684. (Алтайский оптико-лазерный центр // URL:http://tass.ru/kosmos/3515368 (дата обращения: 12.10.2017)).
- [21] Красильников Н.Н. Теория передачи и восприятия изображений. Теория передачи изображений и ее приложения. М.: Радио и связь, 1986. 246 с.
- [22] Астероидно-кометная опасность: вчера, сегодня, завтра / Под ред. Б.М. Шустова, Л.В. Рыхловой. М.: Φ ИЗМАТЛИТ, 2013. 384 с.
- [23] Квантовая электроника. Маленькая энциклопедия // Отв. ред. М.К. Жаботинский. М.: «Сов. энциклопедия», 1969. 432 с., илл.
- [24] Климков Ю.М., Майоров В.С., Хорошев М.В. Взаимодействие лазерного излучения с веществом: учеб. пособие. М.: МИИГАиК, 2014. 108 с.
- [25] Кузнецов Л.И., Ярыгин В.Н. Взаимодействие мощного лазерного излучения с твердой поверхностью и проблемы экологии ближнего космоса // Вестник Челябинского государственного университета. Вып. № 1. Т. 6. 1997. С. 93–98. // URL: ttp://cyberleninka.ru/article/ n/vzaimodeystvie-problemy-ekologii (дата обращения: 16.02.2017).
- [26] Авдеев А.В. К вопросу борьбы с космическим мусором с помощью лазерной космической установки на основе HF-HXЛ // Труды МАИ. 2012. № 61. URL: http://mai.ru// upload/iblock/0ca/k-voprosu-borby-s-kosmicheskim-musorom-s-pomoshchyu.pdf. (дата обращения: 12.03.2017).
- [27] Авдеев А.В. Требования к параметрам космической лазерной установки на основе НF-НХЛ для очистки околоземного пространства от опасных фрагментов космического мусора // Электронный журнал «Труды МАИ». Вып. № 45. URL: www.mai.ru/science/trudy/ (дата обращения: 12.03.2017).
- [28] Авдеев А.В., Метельников А.А. Бортовая лазерная силовая установка для борьбы с космическим мусором // Труды МАИ. 2016. № 89. URL: http://mai.ru//upload/iblock/28b/ avdeev_melnikov_rus.pdf (дата обращения: 12.03.2017).
- [29] Kekler K. Putting payloads with pinpoint accuracy while conducting experiments to monitor ground targets // Acquistion, Traking and Pointing, 3, v. 1111. Orlando, Florida, 1989.

Жуков Вячеслав Михайлович – докт. техн. наук, профессор, главный научный сотрудник ФГБУ «НИИ ЦПК имени Ю.А. Гагарина».

Электронная почта: V.Zhukov@gctc.ru

Scattering Diagrams of Scaled Models of Space Debris under Conditions of Solar-Laser Illumination, V.M. Zhukov

Abstract. The paper deals with the structure of space debris and operational modes of systems for outer space monitoring with the use of lasers. It also describes the laboratory experimental facility and the techniques to register the scattering diagrams of space debris models. The objective was to study the features of the reflective characteristics of the space debris objects in conditions of solar-laser illumination. The developed computer program provides the control of the rotation of models, calculation and printing of statistical characteristics and scattering diagrams. The influence of laser illumination on the distortion of the object's color characteristics and on cosmonauts' eyesight is shown. Interpretation of results is performed with reference to the successive phases of observing space debris objects (detection, capture for tracking, distance measurement, ray focusing, laser impact, monitoring of results) on the illuminated and shadow sections of orbits of space debris objects.

Keywords: scattering chart, scale layout, space debris, solar-laser illumination, astronaut, plasma, braking impulse.

- [1] Космический мусор // URL: https://ru.wikipedia.org/wiki/ (дата обращения: 16.03.2017).
- [2] ЦНИИмаш: объекты космического мусора // URL: http://planet-today.ru/novosti/nauka/item/ 18774-tsniimash-okolo-750-mln-obektov-kosmicheskogo-musora (дата обращения: 08.04.2017).
- [3] Карасев П.А. Ядерные энергетические установки в космосе // Атомная стратегия». № 30. 2007. URL: http://www.proatom.ru/modules.php?name=News&file=article&sid=995 (дата обращения: 04.04.2017).
- [4] Замечания и предложения по решению Комитета по экологии ГД: «О проблемах техногенного загрязнения ОКП». М.: Межведомственная комиссия по экологической безопасности Совета безопасности РФ, № А 21-263 от 27.4.1995.
- [5] Уфимцев П.Я. Метод краевых волн в физической теории дифракции. М.: Советское радио, 1962. 244 с.
- [6] Лабунец Л.В. Цифровые модели изображений целей и реализаций сигналов в оптических локационных системах // Учеб. пособие. М.: МГТУ им. Н.Э. Баумана, 2007. 216 с.
- [7] Непогодин И.А. Отражательные характеристики объектов и фонов и их информативность в лазерной локации // Диссертация докт. физ.-мат. наук. Казань, 1998. 373 с.
- [8] Мишура Т.П., Платонов О.Ю. Проектирование лазерных систем: учеб. пособие. ГУАП, СПб, 2006. 98 с, илл. // URL: http://window.edu.ru/catalog/pdf2txt/059/45059/21837, (дата обращения: 21.03.2017).
- [9] Кузнецов Л.И. Импульс отдачи на твердую поверхность в режиме развитого лазерного испарения // Квантовая электроника. 1993. Т. 20. № 12. С. 1191–1195.
- [10] Кузнецов Л.И., Ярыгин В.Н. Лазерно-реактивный метод очистки космического пространства от малоразмерного мусора // Квант. электрон. 21/6 (1994). С. 600–602.
- [11] Оптико-визуальные приборы транспортного корабля «Союз МС» / Учеб. пособие. ФГБУ «НИИ ЦПК имени Ю.А. Гагарина», 2015. 29 с., илл.
- [12] Выбор лазеров для увеличения дальности бортовых локационных систем космических аппаратов / Старовойтов Е. И., Савчук Д. В., Зубов Н. Е. // Научное издание МГТУ им. Н.Э. Баумана, выпуск N08, 2013. URL: http://cyberleninka.ru/article/n/vybor-lazerov-dlya-uvelicheniya-dalnosti-bortovyh-lokatsionnyh-sistem-kosmicheskihapparatov (дата обращения: 16.03.2017).
- [13] Панели лазерных отражателей // ОАО НПК «Системы прецизионного приборостроения». URL: http://www.npk-spp.ru/deyatelnost/otrazhateli.html.
- [14] Техническое задание на космический эксперимент «Исследование передачи электрической энергии лазерным излучением между КА» // РКК «Энергия», 2011.
- [15] Лазер на МКС для борьбы с космическим мусором // URL:http://www.dailytechinfo.org/ space/6946-lazer-kosmicheskiy-musor.html (дата обращения: 16.09.2017).
- [16] Радиооптический комплекс распознавания космических объектов «Крона» / URL: http://www.rtisystems.ru/products/radarcomplexes/special-radar-complexes/10/ (дата обращения: 16.09.2017).
- [17] Оптико-электронный комплекс «Окно» / URL: http://epizodsspace.no-ip.org/bibl/internet/ okno.html (дата обращения: 16.09.2017).
- [18] Станция оптических наблюдений «Архыз» / URL: http://npk-spp.ru/deyatelnost/ adaptivnaya-optika.html (дата обращения: 17.09.2017).
- [19] Миникулов Н.Х., Гулямов М.И., Абдуллоев С.Х. // Известия АН Республики Таджикистан. № 2 (139). 2010 (дата обращения: 17.09.2017).
- [20] Получение изображений космических аппаратов телескопом алтайского оптико-лазерного центра с использованием адаптивной оптики / Галкин А.А., Гришин Е.А., Иншин П.П., Шаргородский В.Д. // Космические исследования. Т. 46. № 3. 2008. URL:http://elibrary.ru/ item.asp?id=9976684. (Алтайский оптико-лазерный центр // URL:http://tass.ru/kosmos/3515368 (дата обращения: 12.10.2017)).
- [21] Красильников Н.Н. Теория передачи и восприятия изображений. Теория передачи изображений и ее приложения. М.: Радио и связь, 1986. 246 с.
- [22] Астероидно-кометная опасность: вчера, сегодня, завтра / Под ред. Б.М. Шустова, Л.В. Рыхловой. М.: Φ ИЗМАТЛИТ, 2013. 384 с.
- [23] Квантовая электроника. Маленькая энциклопедия // Отв. ред. М.К. Жаботинский. М.: «Сов. энциклопедия», 1969. 432 с., илл.

- [24] Климков Ю.М., Майоров В.С., Хорошев М.В. Взаимодействие лазерного излучения с веществом: учеб. пособие. М.: МИИГАиК, 2014. 108 с.
- [25] Кузнецов Л.И., Ярыгин В.Н. Взаимодействие мощного лазерного излучения с твердой поверхностью и проблемы экологии ближнего космоса // Вестник Челябинского государственного университета. Вып. № 1. Т. 6. 1997. С. 93–98. // URL: ttp://cyberleninka.ru/article/ n/vzaimodeystvie-problemy-ekologii (дата обращения: 16.02.2017).
- [26] Авдеев А.В. К вопросу борьбы с космическим мусором с помощью лазерной космической установки на основе HF-HXЛ // Труды MAИ. 2012. № 61. URL: http://mai.ru// upload/iblock/0ca/k-voprosu-borby-s-kosmicheskim-musorom-s-pomoshchyu.pdf. (дата обращения: 12.03.2017).
- [27] Авдеев А.В. Требования к параметрам космической лазерной установки на основе НF-НХЛ для очистки околоземного пространства от опасных фрагментов космического мусора // Электронный журнал «Труды МАИ». Вып. № 45. URL: www.mai.ru/science/trudy/ (дата обращения: 12.03.2017).
- [28] Авдеев А.В., Метельников А.А. Бортовая лазерная силовая установка для борьбы с космическим мусором // Труды МАИ. 2016. № 89. URL: http://mai.ru//upload/iblock/28b/ avdeev_melnikov_rus.pdf (дата обращения: 12.03.2017).
- [29] Kekler K. Putting payloads with pinpoint accuracy while conducting experiments to monitor ground targets // Acquistion, Traking and Pointing, 3, v. 1111. Orlando, Florida, 1989.

Zhukov Vyacheslav Mikhailovich – Doctor of Technical Sciences, professor, chief researcher, FSBO "Gagarin R&T CTC"

E-mail: V.Zhukov@gctc.ru

УДК 811.161.1:24

ЛИНГВОМЕТОДИЧЕСКИЕ ОСНОВЫ ПОДГОТОВКИ АСТРОНАВТОВ ПО РУССКОМУ ЯЗЫКУ В ЦЕНТРЕ ПОДГОТОВКИ КОСМОНАВТОВ ИМЕНИ Ю.А. ГАГАРИНА

И.В. Супрун

Аннотация. В статье излагаются лингвометодические основы системы преподавания русского языка астронавтам во время их подготовки к полету в России, конкретизируются методические приемы, используемые при обучении астронавтов русскому языку как средству профессионального общения.

Ключевые слова: подготовка астронавтов по русскому языку, ситуации речевого общения, коммуникативные потребности, отбор учебного материала, речевые навыки, грамматические и лексические темы уроков, упражнения и задания.

ЛИТЕРАТУРА

- [1] Методы и технологии обучения русскому языку как иностранному / Капитонова Т.И., Московкин Л.В., Щукин А.Н.; под ред. А.Н. Щукина. М.: Русский язык. Курсы, 2009. С. 65.
- [2] Методика преподавания русского языка как иностранного // Русский язык и литература в общении народов мира. VII международный конгресс преподавателей русского языка и литературы. М.: Русский язык, 1990. С. 203.
- [3] Супрун И.В., Кириленко Е.А. Сборник текстов, упражнений и заданий по русскому языку на материале дисциплины «Комплекс системы обеспечения жизнедеятельности (КСОЖ) ТПК «Союз». Звездный городок, 2015. 55 с

Супрун Ирина Владимировна – канд. пед. наук, доцент, старший научный сотрудник, ФГБУ «НИИ ЦПК имени Ю.А. Гагарина».

Электронная почта: I.Suprun@gctc.ru

Linguistic and Methodological Foundation of Astronaut Training in the Russian Language at the Gagarin Cosmonaut Training Center. I.V. Suprun

Abstract. The article presents linguistic and methodological foundation for the system of the Russian language instruction during astronaut training for a space flight in Russia, specifies language instructional techniques used in the course of astronaut training as a means of professional communication.

Keywords: astronaut training in the Russian language, situation of speech communication, communicative needs, selection of teaching material, speaking skills, grammatical and lexical topics of the lessons, exercises and assignments.

- Методы и технологии обучения русскому языку как иностранному / Капитонова Т.И., Московкин Л.В., Щукин А.Н.; под ред. А.Н. Щукина. М.: Русский язык. Курсы, 2009. С. 65.
- [2] Методика преподавания русского языка как иностранного // Русский язык и литература в общении народов мира. VII международный конгресс преподавателей русского языка и литературы. М.: Русский язык, 1990. С. 203.
- [3] Супрун И.В., Кириленко Е.А. Сборник текстов, упражнений и заданий по русскому языку на материале дисциплины «Комплекс системы обеспечения жизнедеятельности (КСОЖ) ТПК «Союз». Звездный городок, 2015. 55 с

Suprun Irina Vladimirovna – Candidate in Pedagogy, Associate Professor, senior researcher, FSBO "Gagarin R&T CTC"

E-mail: I.Suprun@gctc.ru

УДК 629.78

ИСТОРИЧЕСКИЕ АСПЕКТЫ ЗАТОПЛЕНИЯ ОРБИТАЛЬНОГО КОМПЛЕКСА «МИР».

Ю.И. Маленченко, В.И. Ярополов, А.А. Курицын

Аннотация. Пилотируемый орбитальный комплекс «Мир» (ОК «Мир») являлся сложнейшим и уникальным техническим объектом XX века, созданным в СССР и России, существовавшим в космосе с февраля 1986 года по март 2001 года. В конце XX века ОК «Мир», включавший в себя 7 уникальных модулей, стал настоящей международной космической лабораторией. Также уникальность «Мира» была и в том, что до создания МКС это был крупнейший технический объект, созданный человеком и человечеством вне Земли. После 13 лет существования, в августе 1999 года, после возвращения на Землю очередной экспедиции, комплекс был переведен в режим беспилотного полета, и возникла дискуссия о необходимости его ликвидации. В статье рассматриваются основные результаты полета ОК «Мир» и вопросы, решаемые в космической отрасли России в 1999 году о продлении эксплуатации комплекса или его затоплении.

Ключевые слова: пилотируемый орбитальный комплекс «Мир», модуль, пилотируемый транспортный корабль, международные космические программы.

ЛИТЕРАТУРА

- [1] Изменения в редакции D документа «Последовательность сборки» от 02.10.98. Материалы встречи РКА и НАСА по Международной космической станции.
- [2] Технико-экономические и международно-правовые аспекты коммерческого использования ракетносителей для выведения полезных нагрузок на геостационарную орбиту / К.Г. Бомштейн, Ю.А. Матвеев, Н.В. Толяренко // Вестник МАИ. Т. 3. № 1. 1996. С. 78–82.
- [3] Владимиров А. Таблица запусков РН «Протон» и «Протон-К». По состоянию на 01.05.1998 г. // Новости космонавтики. № 10. 1998. C. 25–30.
- [4] Агапов В. Таблица запусков транспортных грузовых кораблей типа «Прогресс» и «Прогресс-М». По состоянию на 03.1998 г. // Новости космонавтики. № 7. 1998. С. 46–49.
- [5] B. Sotnikov. Mir Decommissioning Overviev. RSA/Energia, 5/30/98.
- [6] Постановление Государственной думы Федерального собрания Российской Федерации «Об обращении Государственной думы Федерального собрания Российской Федерации к Президенту Российской Федерации» (по вопросу о продлении срока существования пилотируемого комплекса «Мир»).
- [7] Отчеты по полетам экипажей орбитального комплекса «Мир». НИИ ЦПК имени Ю.А. Гагарина. 1986—2001 гг
- [8] А.А. Курицын. А.А. Сохин. Опыт создания орбитальных пилотируемых комплексов в мире и анализ перспектив их развития // Вопросы истории естествознания и техники. 2011. № 3. 6 с.
- [9] Этапы инновационного развития Центра подготовки космонавтов имени Ю.А. Гагарина / Ю.В. Лончаков, Б.И. Крючков, А.А. Курицын // Полет. 2015. Вып. 4. С. 4–14.
- [10] Экспертное заключение доктора технических наук, профессора, заслуженного деятеля науки Российской Федерации, действительного члена Академии космонавтики им. К.Э. Циолковского и Международной академии информатизации Ярополова Владимира Ильича по вопросу затопления орбитальной станции «Мир». Материалы работы экспертно-консультативного совета по проблемам национальной безопасности при Председателе Государственной Думы Российской Федерации, 1998. 15 с.

- [11] В.И. Ярополов. Расчет вероятности начала пилотируемых полетов на МКС в запланированном варианте и в установленные сроки. Материалы работы экспертно-консультативного совета по проблемам национальной безопасности при Председателе Государственной думы Российской Федерации, 1998. 3 с.
- [12] Ю.М. Батурин. Космическая дипломатия и международное право. РГНИИЦПК имени Ю.А. Гагарина, Звездный городок, 2006. 138 с.

Маленченко Юрий Иванович — Герой Российской Федерации, летчик-космонавт Российской Федерации, первый заместитель начальника Центра «ФГБУ «НИИ ЦПК имени Ю.А. Гагарина».

Электронная почта: info@gctc.ru

Ярополов Владимир Ильич – докт. техн. наук, профессор, заслуженный деятель науки Российской Федерации, действительный член (академик) Российской академии космонавтики им. К.Э. Циолковского и Международной академии информатизации, главный научный сотрудник, ФГБУ «НИИ ЦПК имени Ю.А. Гагарина».

Электронная почта: V.Yaropolov@gctc.ru

Курицын Андрей Анатольевич – докт. техн. наук, доцент, начальник управления, ФГБУ «НИИ ЦПК имени Ю.А. Гагарина».

Электронная почта: info@gctc.ru

Historical Aspects of Sinking the Orbital Complex "Mir".

Yu.I. Malenchenko, V.I. Yaropolov, A.A. Kuritsyn

Abstract. Manned Orbital Complex Mir (OC Mir) was the most complicated and unique technical object of the 20th century, created in the USSR and Russia and operated in space from February, 1986 through March, 2001. At the end of the 20th century, the OC Mir, comprised of 7 peculiar modules, became the real international space laboratory. Besides, before putting into operation the ISS Mir was the largest manmade engineering object in space, and this fact is another manifestation of its uniqueness. In August, 1999, upon 13 years of operation, the complex was put in unmanned flight mode after the regular crew returned on Earth. In this connection, a discussion about the need to liquidate Mir arose. The paper discusses the main results of the OC Mir mission and the tough process of making a decision on further operation of Mir or sinking it.

Keywords: manned orbital complex Mir, module, manned transport vehicle.

- [1] Изменения в редакции D документа «Последовательность сборки» от 02.10.98. Материалы встречи РКА и НАСА по Международной космической станции.
- [2] Технико-экономические и международно-правовые аспекты коммерческого использования ракетносителей для выведения полезных нагрузок на геостационарную орбиту / К.Г. Бомштейн, Ю.А. Матвеев, Н.В. Толяренко // Вестник МАИ. Т. 3. № 1. 1996. С. 78–82.
- [3] Владимиров А. Таблица запусков РН «Протон» и «Протон-К». По состоянию на 01.05.1998 г. // Новости космонавтики. № 10. 1998. C. 25–30.
- [4] Агапов В. Таблица запусков транспортных грузовых кораблей типа «Прогресс» и «Прогресс-М». По состоянию на 03.1998 г. // Новости космонавтики. № 7. 1998. С. 46–49.
- [5] B. Sotnikov. Mir Decommissioning Overviev. RSA/Energia, 5/30/98.
- [6] Постановление Государственной думы Федерального собрания Российской Федерации «Об обращении Государственной думы Федерального собрания Российской Федерации к Президенту Российской Федерации» (по вопросу о продлении срока существования пилотируемого комплекса «Мир»).
- [7] Отчеты по полетам экипажей орбитального комплекса «Мир». НИИ ЦПК имени Ю.А. Гагарина. 1986—2001 гг.
- [8] А.А. Курицын. А.А. Сохин. Опыт создания орбитальных пилотируемых комплексов в мире и анализ перспектив их развития // Вопросы истории естествознания и техники. 2011. № 3. 6 с.
- [9] Этапы инновационного развития Центра подготовки космонавтов имени Ю.А. Гагарина / Ю.В. Лончаков, Б.И. Крючков, А.А. Курицын // Полет. 2015. Вып. 4. С. 4–14.
- [10] Экспертное заключение доктора технических наук, профессора, заслуженного деятеля науки Российской Федерации, действительного члена Академии космонавтики им. К.Э. Циолковского и Международной академии информатизации Ярополова Владимира Ильича по вопросу затопления орбитальной станции «Мир». Материалы работы экспертно-консультативного совета по проблемам национальной безопасности при Председателе Государственной Думы Российской Федерации, 1998. 15 с.

- [11] В.И. Ярополов. Расчет вероятности начала пилотируемых полетов на МКС в запланированном варианте и в установленные сроки. Материалы работы экспертно-консультативного совета по проблемам национальной безопасности при Председателе Государственной думы Российской Федерации, 1998. 3 с.
- [12] Ю.М. Батурин. Космическая дипломатия и международное право. РГНИИЦПК имени Ю.А. Гагарина, Звездный городок, 2006. 138 с.

Malenchenko Yuri Ivanovich – Hero of the Russian Federation, pilot-cosmonaut of the RF, First Deputy Head of FSBO "Gagarin R&T CTC"

E-mail: info@gctc.ru

Yaropolov Vladimir Ilyich – Doctor of Technical Sciences, Professor, Honoured Worker of Science of the Russian Federation, Fellow (academician) of the Russian Tsiolkovsky Academy of Cosmonautics, Fellow (academician) of International Informatization Academy, chief researcher, State organization "Gagarin R&T CTC".

E-mail: V.Yaropolov@gctc.ru

Kuritsyn Andrey Anatolievich – Doctor of Technical Sciences, Associate Professor, Head of Department, FSBO "Gagarin R&T CTC".

E-mail: info@gctc.ru